• 文字サイズ変更
  • S
  • M
  • L
  • No : 2030
  • 公開日時 : 2019/12/25 09:46
  • 更新日時 : 2020/03/12 14:16
  • 印刷

CARA効用関数

CARA効用関数
カテゴリー : 

回答

CARA効用関数(Constant Absolute Risk Aversion Utility Function, 絶対的リスク回避度一定効用関数)とは、期待効用理論で用いられるフォン=ノイマン・モルゲンシュテルン型効用関数の一種であり、絶対的リスク回避度がいかなる効用水準(消費あるいは所得水準)においても一定になるような効用関数を指す。具体的には、以下のような指数効用関数の単調線型変換として与えられる。
 
【指数効用関数】
u(x)=-e-ax
 
ただし、aは一定となる絶対的リスク回避度を表す。
 
CARA効用関数は、正規分布に従う確率変数と併用して用いられることが多い。例えば、消費あるいは所得水準を表す変数xが、平均がμで標準偏差がσの正規分布に従うとする。このとき、CARA効用関数に従う個人の期待効用は、以下のように表される。
 
CARA効用関数
 
指数関数は単調増加関数であるため、個人の効用最大化は[μ-1/2 2 ]の最大化と等しくなる。したがって、CARA効用関数と正規分布の仮定を組み合わせることで、個人は実質的に平均分散効用に従うことになる。このため、CARA効用関数及びリターンの正規性の仮定は、CAPMの背後に存在する仮定として言及される。
 
また、CARA効用関数を用いた場合、所得効果は存在しない。すなわち、人々が絶対的リスク回避度一定の効用関数に従う場合、所得及び資産の水準は、人々のリスク資産の需要に影響を与えない。
 

 

関連用語

あわせて閲覧されているワード